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(V) Abstract

We develop a general class of approximations of mean-spherical (MSA) type as a

N method for studying lattice percolation problems. We review the MSA and test certain

extensions of it on lattice spin models. The relations between thermal spin models and

percolation models are then reviewed in order to identify natural extensions of the MSA

to percolation models. These extensions are used to treat both site and bond percolation

models. In one low-density' formulation of MSA, the threshold for bond percolation on a

lattice is found to equal the value at the origin of the corresponding lattice Green's function.

This result is extremely accurate for all lattices studied, and in all space dimensions d '

3. An accurate treatment is also given of the general site-bond problem. The entire

percolation locus for this problem agrees very closely with the results of simulation. We

also introduce a new method for studying percolation transitions which is a hybrid of

the Kikuchi cluster approximation scheme and the MSA. The method is shown to give

extremely good values for percolation thresholds while preserving the valuable features of

the standard MSA. In particular, it provides a convenient means of computing the pair

connectedness function. We also explore extensions of our approximations to treat directed

site and bond percolation.

1. Introduction

Percolation is a phenomenon defined by the formation of macroscopic clusters in a

many-body system, given a criterion for pairwise connectedness. It has been studied in

recent years from at least two different points of view. Those studying percolation as a
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particularly accessible, geometrical analog of a phase transition seek an accurate method

to locate the percolation threshold and to study the scaling behavior of physical quantities

in its vicinity. On the other hand, those who want to study the influence of percolation

on bulk material properties and transport processes in disordered materials and liquids

want an account of various key quantities that describe clustering, such as the average

coordination number of a particle and the mean cluster size, throughout the entire range

of system parameters. An approach that addresses both classes of problems is that based on

the solution of integral equation approximations for the two-point connectedness function.

Several such integral equations have been derived and solved, both for continuum and

lattice percolation. 1- 8

One such integral equation approximation which has been studied for various con-

tinuum percolation models is the Ornstein-Zernike equation with closure provided by the

mean spherical approximation (MSA). This approximation was originally developed9 for

nearest-neighbor thermal spin models and their equivalent lattice-gas analogs. It was sub-

sequently generalized"0 to longer-range lattice models and to continuum fluid models. The

MSA for a continuum system of particles at thermal equilibrium can be defined by the

equations

h(Z12 ) = -1 2!12 < a
(1.1)

= -3V(zX 2) Z12 > a

Here, h(zX1) and C(X12 ) are, respectively, the full correlation function and the direct corre-

lation function between particles at the vector positions i and X2. Here, W12 = JX1 - W21

is the scalar distance between such particles, V(X1 2 ) is their pairwise potential energy, and

- (kT) - I , where T is the absolute temperature, and k is Boltzmann's constant. The

distance a is the distance of closest approach fixed by a hard-core potential which is part

of the pairwise interaction. The MSA has been used profitably" to treat a wide variety of

thermal problems. A major benefit of this approximation is that the resulting equations,

e.g., for the equation of state, can be solved analytically for many models of interest.
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Recently 4 the MSA was extended to relate the two-point connectedness function h,(x)

and the direct connectedness function c,(x) of the random sphere percolation model. This

is a model of randomly placed spheres which are taken to be directly connected if their

pairwise separation is less than a fixed distance a, the sphere diameter. For this model,

the MSA is equivalent to the Percus-Yevick, which was first suggested by Coniglio et al5

in work that extended the cluster- expansion treatment of hc(x) by Hill.6 More general

models have been introduced by considering systems of particles in thermal equilibrium

interacting via a pair potential Ob(z), which introduces correlation between the centers

of particles (if one sets O(z) = 0 the model reduces to the random sphere percolation

model). A number of such continuum systems of interest can be solved exactly in the

MSA.7 - 9 ***** It is also natural to apply the MSA to the functions hc(z) and c,(z) in

lattice percolation models. A recent study of MSA for lattice site percolation by Hoye and

Stell6 found that both the percolation threshold and critical exponents for percolation on

certain lattices in three and higher dimensions are predicted accurately. In this paper,

we extend that study by using certain general methods of MSA type to investigate lattice

bond and site-bond percolation. The critical exponents are found to be the same as in

site percolation, as one expects, while the bond percolation threshold is predicted with

remarkable accuracy on all lattices studied, and in all dimensions d > 3. In this paper,

we will work with a very general class of approximations of mean spherical type. These

approximations, in general, define a closure of the Ornstein-Zernike equation by providing

a pair of assumptions corresponding to the two given in (1.1). In general:

1. The volume surrounding each lattice site is divided in two by choosing a sphere that

surrounds that site. The value of the pair correlation function (either h(m) or c(m) can be

used), giving the interaction of a site with other sites inside the chosen sphere, is provided

explicitly, either b, he constraints of the model itself, or by some other approximation.

Many approximation schemes provide such values for correlation functions at small sepa-

ration.
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2. The interaction with lattice sites outside the sphere is described by giving an approx-

imate form, for large separation, of the direct correlation function c(z). In the original

MSA, as given by (1.1), the radius of the sphere in the scheme just described is taken to

be the exclusion radius, defined as the range of the hard-core part of the potential, and

the closure is specified at small separation by giving the values of h(z) inside the exclusion

sphere. We note that the scheme just outlined has obvious similarities with the effective

medium approximation (EMA).13 14 it also has basic differences; for example, it gives, in

general, critical exponents that are non-classical.

This paper is organized as follows: in section 2, we review the general procedure for

solving the MSA for thermal lattice models. We illustrate the use of MSA-like approxima-

tions by applying these to the Ising model. In section 3, we discuss the relation between

thermal models and percolation models in order to identify natural extensions of the MSA

framework to percolation. We review the earlier treatment of site percolation. Appropriate

variants of the MSA are then applied to both bond and site-bond percolation. In Section

4, we discuss the use of the Kikuchi cluster approximation to obtain the short-distance

values of h(r) needed to complete an MSA-like closure. In Section 5, we apply MSA-

like approximations to directed site and bond percolation models. Section 6 discusses the

present limitations of the approximations discussed in this paper, and gives suggestions

for further research. Section 7 summarizes our conclusions.

2. General MSA Formalism

In this section, we review the general Ornstein-Zernike formalism for lattice models.

This formalism is identical for thermal and percolation problems. We illustrate its use by

applying it to the nearest-neighbor Ising model, as described in lattice-gas terminology.

The Ornstein-Zernike equation is

= C(-12) + pc(X 1 8 )h(X32 ) (2.1)
Z3

In ths section we use the terminology of thermal physics, in which h(r 1,) and c(W12) are,
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respectively, the full pair correlation function and direct pair correlation function. The

sum in 2.1 is over all lattice sites. We note that the function h(r) and other functions

defined on a lattice depend upon a vector which we denote as x or xii, this is the separation

of sites i and j. An equation identical to (2.1), but with different boundary conditions,

governs the relation between the pair connectedness function, given by g,(X) = h,(:) + 1,

and direct connectedness function c,(z), in a percolation model. This will be discussed in

detail in the next section.

We indicate the Fourier transform of a function, e.g. c(z), by placing a caret over the

corresponding function symbol. Thus we have

c() = -')3 J(k)e" d3k (2.2)

Here the integral over wave number k is over a single Brillouin zone of the lattice. Also, fl is

the volume of the Wigner-Seitz cell associated to a single lattice site; it is here normalized

to unity. Taking the Fourier transform of both sides of (2.1) allows an algebraic solution

for h(k) in terms of 6(k):

1 - p (k) (2.3)
1 -pa(k)

The strategy for solving (2.1) is this: since c(a) is assumed to be short-ranged, 6(k) can be

written explicitly in terms of a small number of unknown constants, namely the different

values of c(z) which are non-negligible. Substituting an assumed form for 6(k) in (2.3) and

Fourier- transforming then gives a solution for h(z). Boundary conditions and constraint

conditions specify the remaining constants in the solution. These conditions contain the

physical assumptions specific to the model being studied.

Specifically, for the problems of interest in this section, we assume that c(X 12 ) is

nonzero only if z 22 is either zero or equal to a nearest-neighbor lattice vector, in which

cases e(z) takes the values c0 and cl, respectively. Substituting this information in the

transform inverse to (2.2) then gives, for hypercubic lattices
d

6(k) = co + 2c, E cos kia (2.4)
i=1
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Here a is the lattice spacing and d is the dimensionality of the lattice.For the sake of

algebraic simplicity, we specialize our discussion to hypercubic lattices and will work, unless

otherwise stated, with the three-dimensional simple cubic (SC) lattice. The discussion of

this paper applies, however, to general Bravais lattices.

Taking the Fourier transform of (2.3) and adding to both sides the identity

' f 1 - pg(k) e-s"zdsk (2.5)

then gives
fl / (k)eih. d k(2

6.,0 + ph(z) = )3 (2.6)

Using (2.4) for 6(k) allows us to rewrite the denominator of the RHS as

1-p2(k) = zPC [( + K 2 ) - d-1  c sk a  (2.7)

Here z is the coordination number for the lattice, and the quantity K 2 is given by the

expression
K 2 =Z

2

S-co - zpcI (2.8)
pc1

Substituting (2.7) into (2.6) gives

ko + ph(--) = i.IL f d'k
zpc 1 (2w)' (1 + I 2 ) - d-I x? 1 cos kia (2.9)

- zG(m)
zpc1

This last equation defines G(z), which can be identified as the Green's function of the lattice

version of the Helmholtz wave equation with wavenumber K 2 = ZI 2 . This function occurs

frequently in mathematical physics and has been tabulated.' 1s 6 We note in particular that

for x 2 = 0, the function zG(z) is the generating function for random walks on the lattice

being studied.
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We digress briefly to justify our idtntification of r., as defined by (2.8), with the inverse

correlation length. For convenience, define X'z) -. ,o + ph(x). Then we have

*(0) 1 + ph(0)

(k) 1-+ ph(k) (2.10)
1 -p(k)
T- P6(0)

where the second step uses the Ornstein-Zernike equation (2.3). Expanding the RHS of

(2.10) in powers of k 2 and substituting (2.4) gives

I + A2(ka) 2 + O[(ka)4] (2.11)

with k2 the norm squared of the vector k and A2 defined by

A2 = PCp(O) (2.12)

For simple hypercubic lattices, A2 can equivalently be identified as17 '1 s

A2 = E XX(2:) (2.13)

That is, A2 is the second spherical moment of the quantity X(z) divided by its zeroth

moment. To see this, write X(z) in terms of its Fourier transform, replace the factors of x

with k-derivatives, and note that (2.11) is a Taylor series. Direct comparison then shows

that zA2 = - 2 , with r. defined by (2.8). The singular part of the susceptibility near a

critical point is proportional to the volume integral of h(z), i.e., to h(0). According to

(2.3), we can then identify such a point by the condition

p (O) 1 1 (2.14)

Note that by (2.8), this is equivalent to the condition IC2  0. Also, it is reasonable to

identify A2 with the square of the correlation length and thus identify -2 = t2. The

correlation length defined in this manner has the same critical behavior as that based
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on the assumption that h(m) decays exponentially; the former definition is however more

generally applicable. For example, even when h(z) has algebraic decay, as it will when c(X)

does, this definition is still applicable, providing that the second moment of c(z) exists.1 1

Several further relations are useful for the general discussion of critical behavior as

described by the Ornstein-Zernike equation. To develop these, we write Go and G 1, respec-

tively, for the values of the Green's function G(m), defined by (2.9), evaluated for a lattice

displacement vector equal, respectively, to zero, and to the vector difference between a pair

of nearest neighbors. We can specify these displacement vectors as x = 0, and Izl = a,

respectively. Note that this causes no ambiguity because, by symmetry, G(r) takes the

same value for all nearest neighbor displacement vectors. In the special case that K2 = 0,

which defines the critical point, we write these same quantities as Go and G1, respectively.

Similarly, the values of h(z) at T = 0 and xIj = a are written h0 and hl, respectively.

Setting IzI = a in (2.9) then gives
X, = ph, (2.15)

zpc1

Dividing (2.9) for z = jal by the same equation, with x = 0, gives

zG - ph, (2.16)
zG0  1+pho

Finally, we can relate Go and G1 , for a SC lattice, by using the identity

Af d-1 cos ka e kdk = zG 1  (2.17)
(27r)3 (1 + 2 ) -d-' cos kia

(A similar identity holds for any lattice.) This follows directly by using the symmetry of

a Bravais lattice and the definition of G1 . This gives directly, using (2.5) and (2.9)

(1 + 2 )zGo -zG = 1 (2.18)

This relation can be used to eliminate G1 from (2.16) and give a basic relation for the

critical point:
zoo- I ph, (2.19)

zOo 1-4- pho
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We note that the lattice-gas density p occurs explicitly only in the combinations pco,

pcl. Two further constraints mubi now be supplied to completely specify an MSA-like

closure of the Ornstein-Zernike equation. In standard applications of the MSA to pair

correlation functions, these are chosen to be the vanishing of the correlation h(z) inside

the interaction hard core, and the equation c(m) = -3v(z) outside this core. Here v(z)

is the interparticle potential and/3 = 1IkT. The second of these equations is a "linear

response" high-temperature approximation; it is exact to first order in/3 and the potential

v(z). For the Ising model, this implies h0 = -1 and c1 = K where K = -PJLG and JLG

is the lattice-gas coupling constant, related to the Ising model coupling constant JISING

by

JLG = 4JsING (2.20)

Substituting these relations into (2.15) and (2.19) then gives the condition for criticality

p(1 - p)Kc,-jt = Oo (2.21)

Because we consider the high temperature, zero-field, Ising model only, we have, for the

lattice-gas density, p = 0.5. Thus

K ,t = 40o - 1.08 (2.22)

for the three dimensional simple cubic (SC) lattice. This should be compared with the

value Kct = .840 given by the second Bethe-Peirls approximation for this lattice, and also

with the value K. t = .918 given by high-temperature series analysis, 1 ' which represents

the most precise means available for estimating such quantities.

We derive a variant of this approximation if we recall the definition of c(z) as the

direct correlation function and write the low-density approximation

c(z) = f(z)
(2.23)
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This approximation is exact to first order in the lattice-gas density; i.e., it is the first term

in the Mayer expansion. Using cl from (2.23) gives the criticality condition

K,.it= - ln[1 + 40o] (2.24)

which implies Kit = .732. Thus for the SC Ising model in three dimensions, the estimates

for the critical point given by the high-temperature approximation (2.22) and the low-

density approximation (2.24) are of comparable accuracy. It is (2.22) (or in general the

constraint c(m) = -flv(z)) that has come to be called the mean- spherical approximation

(because (2.22) proves to be exact in the mean-spherical and spherical models of a magnetic

system.) As we shall see, in some percolation problems, in which h(z) is replaced by the

pair connectedness function and c(r) by the direct connectedness function, it turns out

that (2.23) (or in general c(c) = exp[-Pv(x)] - 1 ) appears to be the more natural and

generally useful approximation. This is also found to be the case in studies of continuum

percolation.
5

3. The MSA for Site and Bond Percolation

In this section, we will apply the Ornstein-Zernike formalism of Section 2 to lattice

percolation models. First, the case of site percolation is reviewed. We show that a nat-

ural approximation for bond percolation reproduces an analytic formula for the critical

point that was already shown empirically, by Sahimi2 ' and co-workers, to be remarkably

accurate. Finally, we give an approximation of MSA type for the general case of random

site-bond percolation and reproduce the complete percolation locus for that model.

The formalism of Section 2 can be directly applied to percolation models because these

satisfy an Ornstein-Zernike equation of the form (2.1). In particular, one has2

gCOT12) = cc(X12) + P E cc(z13)gc(-s2) (3.1)
23

with g,(1z2) and cc(z12), respectively, being the connectedness function and direct con-

nectedness function, respectively. The Ornstein-Zernike equation can be taken to be a
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definition of c(z), and thus has no content, per se. However, we focus here on the 'deriva-

tion' of this equation from other formulations that permit a more direct estimate of the

value of c(z) and h(z) for small separation. This is valuable because, in any case, one

needs an independent representation for cc(z), or an independent second relation between

h,(z) and cc(z) in order to have an closed set of equations for these quantities. Below, we

shall refer to both the p and P expansions, which facilitate estimation of cc(z) for small

argument. In the case of random or uncorrelated percolation, hc and cc are temperature-

independent, so that only the p expansion is available. We focus in particular on mappings

of percolation models onto limiting cases of thermal models; these allow us to draw on our

experience with MSA-like approximations for the latter. Such mappings allow us to exploit

the machinery of liquid-state physics. Also, they are essential when thermal correlations

are imposed between the sites or bonds of a percolation model.

In the absence of such correlations, one can calculate series for cc(x) and gc(r) in

purely graph-theoretic terms, using a formulation due to Essam20 in terms of self-avoiding

walks. For example, for pure site percolation one has

gc( ) = Ed(G)p(G) (3.2)
G

where the sum is over one-irreducible, two-rooted subgraphs G of the lattice being studied,

v(G) is the number of vertices in the graph G, and d(G) is a purely combinatoric quantity

depending only on the graph G. The function c,(z) is given by a similar expression, but

with the sum restricted to non-nodal graphs.20

The techniques of liquid-state physics, such as integral equations, Mayer expansions,

etc., are most naturally formulated in the continuum, or more precisely, in lattice-free

language that applies to both continuum and lattice models. The same is true of the

formulation of percolation theory best suited to adapting these techniques, that due to

Hill.' We sketch this first. Specifically, we write the Boltzmann factor for a thermal model
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as a sum of two terms:

exp[-V( 12 )] {xp[-#v(z12)]Pb(Zl2)} { exp[-#v(x1 2 )][l -Pb(z12)]I (3.3)

= e+(Z 12 ) + e*(, 1 2 )

This induces a corresponding separation of the Mayer function

f(-T12)= f+(a12) + f-(X1 2 ) (3.4)

with f+ = e+ and f* - 1. The function pb(X12) defines the separation-dependent

probability of a bond between two particles. Its choice is dictated by the physical phe-

nomenon to be modelled. The first term in (3.2) is identified with the particles being

directly connected, the second with them not being directly connected. Substitute the

sum (3.4) for each Mayer bond in the virial expansions of h(z 1 2 ) and c(z 12 ), and expand

each Mayer graph into subgraphs whose lines correspond to f+ or f* bonds. Define 2'2 1

the connectedness function g(z12) to be the sum of all such subgraphs in the expansion

of h(z) in which the root points are joined by a chain of f+-bonds; the blocking func-

tion gb(z12) is the sum of all the remaining subgraphs. Similarly, one defines the direct

connectedness function cc(x) to be the sum of the corresponding subgraphs contributing

to c(z); this is equivalent to the set of subgraphs contributing to gc(x) that in addition

have no nodal points. These definitions are compatible with (3.1). Thus the correlation

function has been written as the sum

h(z1 2 ) = gc(T 1 2) + g(X12) (3.5)

of the two-point connectedness function and two-p-)int blocking function. One can show21

that gc(z12) as defined above formally is in fact the two point connectedness function

for a many-body system of particles having correlation function h(z) and density p, and

being pairwise- connected with separation-dependent probability pb(z). The connectedness

function gc(z12) is the probability distribution associated with finding particles at r, and
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C2 in the same connected cluster. Similarly, gb(:l2), the two-point blocking function, is

the corresponding probability diet ribution associated with the particles at x and Z2 being

in different dusters. We note that our probability-density definition of g,(z) and the

corresponding definition of ce(:) induced by (3.1) are not dependent on the density series

expansions of these quantities; the latter are not fully general. One expects such series

to represent gc(m) and c,(x) only for p and P that characterize non-percolating states; as

yet only partial results are available 7'"2 for their radii of convergence. We note that, in

general, one cannot give a separate physical interpretation in terms of probability densities,

of cc(x), because, unlike g,(r), it need not be positive definite.

The expansion procedure of Hill can be carried out automatically by using the isomorphism 2 31l

between percolation and the one-state limit of the a-state Potts model. Specifically, the

one-state limit of a continuum Potts model' with interparticle potential

ij = 4(a,1j) + v(Xj)[1 - bai,-'j (3.6)

gives a correlated continuum percolation model with interparticle potential '0(X) and

separation-dependent bond probability pb(x). If one develops Mayer expansions for the

thermodynamic quantities of the model defined by (3.6), and applies the operator d

to them, they yield the basic quantities in the description of the corresponding percolation

model. This procedure provides a realization of the general percolation process described

below (3.5), with each pair of particles connected with a separation-dependent bond prob-

ability given by

pb(m) = I - exp[-,Pv(x)] (3.7)

with v(z) as in (3.6). If we write the Ornstein-Zerike equation (2.1) for the specific case

of the a-state Potts model, takes the a -, 1 limit and, using identities" ,21

h(zia,:2 ,#)-. -ge(012) (3.8)

1 - , (3.9)
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we recover the equation (3.1). Here a and P are any two different spin states.

When we restrict the continuum Potts model to a lattice, by imposing the added

restriction that particles only occupy positions whose coordinates are integers, the result

is a Potts lattice gas24 whose one state limit is a very general percolation model. Before

doing this, we add to the potential 0(zj) in (13.6) delta-function potential interaction

that prevents overlap of two lattice gas particles, and thus of two sites in the resulting

percolation model. We then set the function pb(z) equal to pb, a nearest-neighbor bond

probability for Ix I = a, and equal to zero for z 0 a. The lattice site and bond percolation

models are given by special cases Pb = 1, and p = 1, respectively.

The simplest percolation models are directly related to thermal lattice models. For

example, pure bond percolation is the a --+ 1 limit of the s-state lattice Potts model.

Site percolation is the zero-temperature limit of a site-dilute Ising model.31 It can also

be realized as the one-state limit of a Potts model containing multi-site interactions. 31

However, the former mapping seems not to be useful in this context, and the latter has

not yet been exploited in this context because of its complexity.

We now use these mappings to construct MSA-like approximations for specific perco-

lation models. We will use the same terminology as in Section 2, but by h0 , hl, we will

mean g,(z) evaluated at z = 0 and Iml = a, respectively. Similarly, by co, cl, we denote

cc(t) for z = 0 and IzI = a, respectively. Site percolation models have already been studied

using the MSA approach. In this case it is natural to choose

ho = 0
(3.10)

hi = 1,

the former because we must forbid multiple occupation of sites, as just discussed, and the

latter because neighboring occupied sites are always connected. Substituting (3.9) into

(2.19) gives the critical site density for percolation

zoo0 - 1
Pcrt = zo (3.11)

zoo
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This is found numerically to be a good approximation in general.'

For hypercubic lattices, the MSA just described gives p, to high accuracy for d > 4.

However, in three dimensions, the scheme gives Pc = .341, where series analysis gives

.312 ± .003.20 This discrepancy indicates that an optimal MSA for site percolation has

yet to be found. We note that the effective medium approximation (EMA) 1 3 for the

conductivity of a site-disordered resistor lattice has similar difficulties. The EMA is very

similar in spirit to the hybrid approximations to be discussed next. Although this scheme

gives excellent approximations in two dimensions, it also predicts14 a three dimensional

site percolation threshold which is too low by 10%.

As already discussed, continuum percolation has many similarities to site percolation

as well as bond percolation. Thus the difficulty just discussed may also account for the

need to add correction terms3 ,5 to the naive MSA for random continuum percolation in

order to recover a good estimate of the critical point in this model. These matters are

under investigation.

In the case of bond percolation, we keep the first equation of (3.10), but must modify

the second. One possibility is to follow the intuitive notion that the direct connectedness

function c(z12) should be the probability density associated with having a direct bond

between the sites at z and W2

C1 = Pb (3.12)

Using the Potts-model correspondence, and keeping only terms to first order in p also gives

this approximation. This form of the the MSA is appropriate in conditions of low bond-

density; in terms of the related Potts model, Pb is also a "high-temperature" expansion

variable (see e.g. 3.7). Also, we set p = 1 because all sites are occupied in bond percolation.

This gives for the bond percolation threshold

(Pb) ,cit = 0 (3.13)

Sahimi et.al.25 noted from n-imerical comparison that this relation provided an extremely
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good approximation for all regular lattices, and in all dimensions d > 3. It is very satisfying

that an intuitively reasonable form of the MSA gives just this result. Table I shows

the quality of the estimate (3.13) for a variety of three-dimensional lattices, as well as

hypercubic lattices in higher dimensions.

We could have instead made the approximation

c1= K (3.14)

where K is defined by the correspondence between the Potts model coupling constant, and

the bond probability in the percolation model which is its one-state limit:

Pb = 1 - eK (3.15)

In other words, if we very formally attempt to treat bond percolation as if it were a

thermal model (remembering the Potts-model correspondence), we would be led to try the

high-temperature approximation (3.14). This gives the critical condition

(Pb)ecvit = 1 - exp(-Go) , .223 (3.16)

This should be compared with (3.13), which gives a value of .252, and the existing series

analysis results, which give .249 ± .0002. Thus (3.16) is a reasonable approximation, but it

lacks the remarkable accuracy of (3.13). A similar result is found5 in studies of continuum

percolation, where a form for c(z) must be assumed over the entire range of values for

which v(z) is nonzero. In that case also, the low-density ansatz (3.12) is found to give a

prediction for the threshold which is numerically superior to the high-temperature ansatz

(3.14).

We make the observation that approximations for the short-range values of c(z) would

be better motivated if in fact that quantity were a probability density; in fact, it seems never

to be positive definite. This can be easily checked for the problems studied here because

c(z) takes only two values, co and cl. For both pure site and pure bond percolation, it
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is always found that for any lattice studied that pc1 > 0 and pco < 0. If this were not

true, then critical percolation, in the MSA, would be directly isomorphic to a random walk

model2 l 27 defined by transition probabilities pco, pci. However, since having a nonzero

value for co simply rescales the time coordinate describing the progress of a random walk,

one can always rescale the other nonzero values of ci by (1 - pc0 ) and get a physically

realizable random walk. In fact, we can rewrite the basic equation (2.15) in a way that is

applicable to MSA-like approximations in which c(z) is not assumed to vanish f'r x > 1:

z( 1  _ = ph, (3.17)

The existence of this formal equivalence is seen to be a general fact about all mean spherical

approximations, even those for anisotropic or directed models, as we discuss in Section 5.

However, in general, the coefficients c, oscillate in sign, thus higher-order approximations

do not give realizable walks. We note that the normalization condition for the transition

rates in such a random walk is just the criticality condition for the model being studied.

(see e.g.2.14).

Since the MSA gives a good approximation to the threshold for both pure site and

pure bond percolation, it is natural to use it to study the general site-bond percolation

model, in which a duster is defined to be a group of occupied sites connected by occupied

bonds. As before, there are several natural approximations that one can use to close the

Ornstein-Zernike equation. Note that (3.11) is, a priori, just as reasonable an assumption

in the general site-bond problem as in the pure bond problem. Using it in the general

problem, however, gives a percolation locus in the (P,Pb) plane defined by

Ppb = 00 (3.18)

which, e.g., in the case of pure site percolation, is immediately seen to be a very poor

approximation.

Thus, we instead approximate h, by enumerating the smallest graphs that contribute

to it, i.e., the smallest bond sets that join two sites that are nearest neighbors. This is
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equivalent to using the Potts lattice-gas mapping described below (3.8) and calculating

the Mayer expansion of that model. On the simple cubic lattic, considering just the two

graphs of Figure 1 gives

hl(pb) =pb (l- pb) * [1b(1 -p2p)] (3.19)

Pb + (1 - pb)6p 2  + 0(p4)

This approximation for hi is exact for site percolation, and gives, for bond percolation, the

critical value (hl)c,-tt = .258, whereas the approximation based on (3.11) gives .252 for the

same quantity. The percolation locus in the (P,Pb) plane as given by the approximation

(3.16) is shown in Figure 2. This locus has been obtained by simulation in both two

dimensions28 and three dimensions. 29 The critical locus given by substituting (3.19) in

(2.19) is found by calculating the critical site density p, for a specific value of Pb, by using

the Newton-Raphson method. This approximation is already of high quality and can easily

be improved by adding terms, except for the part of the phase plane near the pure site

percolation limit; we discuss this problem further in Section 5. It is worth noting that

many different schemes are available for estimating the quantity h, in both thermal and

percolation models. In particular, the method of Kikuchi" involves assuming a functional

form for the free energy which contains as parameters the values of h(m) for small separation

z, and mimimizing this functional to determine these quantities. We discuss this class of

approximations in the next section.

4. Hybrids of the Kikuchi Cluster Approximation and MSA

In Section 3, we showed that one can obtain good estimates for phase transition loci

from MSA-like approximation schemes if reasonable estimates are available for values of

the correlation functions at short-range. In this section, we explore the possibility of

using the Kikuchi cluster variational method (CVM) 1 to determine these. In order to

complement our discussion in Section 3 of the basis of an MSA approach to percolation

models, we also obtain directly a Kikuchi CVM for bond percolation, by using the Fortuin-

Kastelyn mapping"3 between percolation and the Potts model. We compare the direct
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estimates of the critical bond probability given by this method with hybrid estimates given

by using the structural information from this method as input to MSA-like approximations.

The hybrid estimates are found to be superior. The cluster variational method(CVM),

first systematically developed by Kikuchi", involves several steps. We outline these here,

restricting our discussion to the Ising-like spin models for which the theory was originally

developed:

1. Because Ising variables take discrete values, the various small clusters of contiguous

spins (pairs, triplets, etc.) can take on only a finite number of possible configurations.

After specifying a set of small dusters to serve as a basis set, one chooses as working

variables the probabilities of occurrence of each possible configuration of these clusters.

If the basis set consists of only one cluster, a nearest-neighbor pair, the corresponding

occurrence probabilities are just the values of the spin-spin correlation function at nearest-

neighbor separation. We note that these variables are exactly the quantities needed in

the MSA-like approximations discussed in this paper. Direct use of these values yields the

well-known Bethe approximation.2 4

2. In terms of the working variables, one writes a consistent approximation for the free

energy of the system. Requiring that this expression be minimized with respect to the

working variables then gives a set of constraint equations to determine the values of the

working variables as functions of the system parameters (temperaure, magnetic field, etc.)

3. One can then determine an approximation for the critical point, by requiring that the

symmetry-breaking variables display power-law behavior as the singularity is approached.

Instead of following this last step to determine the location of the critical point one can

instead use the following hybrid method: use the functional expressions for values of the

two-point correlation function at small separation as input to the MSA-like approximations

discussed in Section 3. Specifically, the CVM will give expressions for the quantities h0
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and hi in the equation
ph, z o o- 1 (4.1)

1 + pho z-o

as given by the MSA. We remark that it is not clear a priori that this method of determining

the critical point will be successful, as no single consistent expansion scheme has been

employed. For example, the numbers used to evaluate the RHS of (4.1) are obtained by

setting c(c) to zero for xj: > a; this type of low-density approximation is not a priori

consistent with use of an extremely accurate value of hl.

The algebra involved in realizing the program outlined above has been detailed in

the beautiful paper of Kikuchi 1"' and will not be repeated here. We follow the notation

used in that paper and merely give the results of our calculations. The v-.iab!e h, used

in Section 2 to describe nearest-neighbor values of the Ising model correlation function is

related to Kikuchi's variable yj by h, = 4y, - 1. If we use the lowest-order CVM, in which

the only cluster in the basis set is a nearest-neighbor pair, the result is

h1 = H -H 2  (4.2)-H 2 -H- 2
hi=6 - H 2 - H - 2  4)

with H - exp[KIsrNo]. This result was calculated for a two-dimensional Ising model, but

at this low level of approximation, it is entirely consistent to use the relation

3(SD) - 4 K( 2D) (4.3)
WISING - ISING

noting that the Bethe approximation per se depends only on the combination zK, where

z is the coordination number. Substituting (4.2) into (4.1) gives a critical point located

at K,.it = .779, as compared with the value K.,t = .918 given by series analysis. This

is slightly better than the value Kc,it = 1.099 given by the direct Kikuchi method at the

same level of approximation. An improved treatment which makes explicit -,se oi the .D)

nature of the lattice31 a gives

h2 (4.4)
= 2 +64, + 1
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where the auxilliary variable 4' is defined implicitly by

H 2  exp[IKLG]

1 [30+1]-i (4.5)

-# [ +3J

Substituting (4.4) into (4.1) gives Kc = .926, which is an extremely good approximation!

In order to apply the same approximation scheme to percolation models, we first

develop the Kikuchi cluster approximation for bond percolation. Kikuchi3 ' applied his

method to site percolation by noting that it is equivalent to the zero-temperature Ising

model. He treated bond percolation as site percolation on the corresponding alternate

lattice. For many common lattices, e.g, the simple cubic latice, this requires an enlarged

primitive cell and, presumably, requires including larger clusters in the basis set to give

results of comparable accuracy to that obtained for site percolation. We proceed instead

by calculating K.,it(a) using the CVM for a dilute a-state Potts model, then taking the

one-state limit as described in Section 3. Using the Bethe approximation for the two-

dimensional square lattice gives for the bond percolation threshold Pb = .4226, as compared

with the exact result pb = .5. Here we used the correspondence (3.15) between the Potts-

model coupling and bond probability.

We now estimate the three- dimensional bond percolation transition by using a pro-

cedure parallel to that used above for the Bethe approximation to the Ising model. First

we use the direct Kikuchi procedure just described which is based on the Potts-model

mapping. Using the scaling 6K(3D) - 4K'2P) as above gives Pb = .231 for the transition

point in a simple cubic lattice, as compared to the value .252 given by series methods.

We now instead use the functional form for the nearest-neighbor connectedness function,

as given by the Kikuchi method just described, as input to the MSA defined by (4.1).

The Bethe approximation for the Potts-model variable yl, which is the probability that a

nearest-neighbor pair are in different spin states, is given by

y, = L./[a + a(a - 1) exp(-2K)] (4.6)
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We obtain the nearest-neighbor connectedness function hi for bond percolation by using

the correspondence (3.8) and the relation h, = 4y, - 1. Using the result in the MSA as

before gives a critical bond probability pb = .242, a substantially more accurate result.

As a more involved illustration of this hybrid Kikuchi-MSA method, we consider the

Wannier approximation, in which the nearest-neighbor pair and elementary plaquette, or

square, are taken to be basic clusters. It seems quite difficult to use the direct Kikuchi

method described above, in which one first applies the cluster variational method to the

*-state Potts model, then takes the one-state limit, as a means for locating the percolation

critical point. Indeed, if the spins in the basic clusters are allowed to be in any of a

states, with one of the states distinguished as the symmetry-breaking state, there are 20

different configurations of these clusters (see Figure 3). Locating the critical point then

involves finding the determinant of a matrix of rank 20. We note in passing that Kikuchi's

method"' of realizing bond percolation as site percolation on an alternate lattice is easily

seen to lead to an equally large variable set. The hybrid MSA technique developed in this

section is readily applied to this model, however. Since the one-stite limit of the Kikuchi

method is of some interest in its own right, we describe it in Appendix A. Here we sketch

the procedure and discuss the results of using it. After setting the number of states a

equal to one, the values of the configuration variables in the symmetric state are quickly

obtained. We derive an expression for the pair configuration variable Y12 as a function of

bond density, along with the corresponding form for hl. Substituting this into the MSA

equation (4.1) gives a percolation critical point at bond density p, = .249. This is in

remarkable agreement with the best series estimate, 32 pc = .249 ± .0002!

5. MSAoLike Approximations for Directed Percolation

In this section we apply the class of MSA-like approximations discussed in this paper

to directed site and bond percolation models.

In order to gain some perspective on the strengths and limitations of the methods

discussed in this paper, we use them to calculate the two-point connectedness function,
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and the location of the critical point, in directed percolation models. We can define these

in general as follows: a distinguished direction is chosen in the space occupied by the lattice

being studied. This direction may or may not coincide with one of the principle axes of the

lattice. When a vector in this preferred direction is projected onto the bonds of the lattice

it induces in them an allowed direction of passage. In the convention adapted here, bonds

which are orthogonal to the preferred vector remain non-oriented and thus allow two-way

passage or connection. Models containing a class of such bonds will then be called partly

directed percolation models. This construction is motivated by one of the basic classes

of applications for directed percolation models: transport through random or two-phase

materials under the influence of a uniform gradient or bias field. A given lattice may then

yield a number of different directed or partly directed models depending on the preferred

direction chosen. In terms of MSA-like methods, these models differ from isotropic models

in one basic way: random walks on the corresponding lattices either allow only a very

restricted class of closed paths, or allow no such paths. The importance ef this fact will

be explored further when we discuss the results of this section in general terms. Here we

focus on developing specific MSA-like approximations.

We may directly adapt the methods already developed to treat directed percolation as

regular percolation on a lattice with peculiar conductivity properties. Specifically, we make

equations (2.9) and (4.1) the basis of our treatment. The latter will be used unchanged,

while for the SC directed lattice (with the (1,1,1) vector the preferred direction), the

equation (2.9) becomes

,+ ( 2) r- pco - Ec(x,)exp(kx,)(5.1)

Here the sum is over all sites, at positions zi, for which ci 5 0. In general, directed

percolation models will have two correlation lengths, both of which become infinite at the

critical point.' 2 We focus here on the value predicted by MSA for the critical point. We

calculated nth-order approximations as follows:
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1. We assume that the n values of c(x) corresponding to nearest neighbor, next-nearest

neighbor, etc., separation are nonzero; for larger separations z we assume c(z) = 0. The

nonzero values ci are related by the random-walk representation (5.1) to nonzero values of

step fugacities wi by

Wi - ci (5.2)

Here W1 , W2, etc. are fugacities for steps to nearest-neighbor, next-nearest neighbor, etc.,

sites. We have used the fact that co = 0 for this model; this can be seen by setting z = 0

in (5.1).

2. One then solves n equations of form (4.1) for the step fugacities wi as functions of the

(site or bond) density. Here we use explicit, exact formulas for both the connectedness

function hi and the random-walk generating function zGi. These are readily found because

the directed random paths between any pair of points which contribute to these functions

are self-avoiding walks, i.e., they lack loops. Also, the number of such walks is small.

3. Substituting the exact fugacities wi(p) into the criticality condition Eiwi = I then

gives a polynomial equation whose smallest positive root is the critical density.

The critical densities given by successive approximations of this type are listed in

Table 2. These numbers seem to converge; however, for both site and bond problems, the

resulting critical density is lower than the simulation value by about 8%.

6. Limitations of the MSA and Directions

for Further Research

In this section, we analyze possible reasons for the failure of MSA-like methods to

yield highly accurate percolation thresholds for some systems.

Why do MSA-like methods give substantially better threshold values for bond per-

colation models than for site percolation models? Of course, the extension of MSA-like

methods in the former case is better motivated than in the latter case; this was the pur-

pose of our development of the Potts-model formalism in Section 3. But we need a more

basic understanding to extend these methods further. Here we will explore two possible
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elements in such an understanding.

The dominant singularity in the Mayer expansion of mean cluster size, and other phys-

ical quantities that describe bond percolation models, is the physical percolation threshold.

This is not true in general for site percolation models; their dominant singularity tends to

be located at a negative real value of density. Dominance by unphysical singularities has

also been found in the series expansions of directed site models.32

We have no general argument that MSA-like approximations will yield a real, positive

density as the dominant singularity. However, this is found to be the case with all the

approximations studied in this paper. The dominant singularity in the anti-ferromagnetic

lattice Potts model lies on the negative real axis. In the MSA, the Potts model for neg-

ative density is mapped onto bond percolation at positive density; thus, in the MSA, the

dominant singularity of bond percolation occurs at a positive, physical density. We ob-

serve the same fact in the MSA-like approximations studied in Section 5. If one plots the

singularities of the mean cluster size, which are just the zeroes of the polynomial equation

p6(k = O,p) = 1 (6.1)

one always finds the dominant singularity at a physical density. The unphysical singu-

larities associated with site percolation also cause difficulties in applying other standard

methods for studying phase transitions. Dealing with such structures via approximations

of MSA type is thus an open problem.

The slow convergence exhibited by the MSA for 3D directed problems can be under-

stood in two complementary ways. We briefly describe both of them. In the direct form of

the MSA described in Section 5 for directed percolation models, the connectedness func-

tion is represented as a generating function for directed random walks. The MSA, roughly

speaking, uses the balance between random walks that return to their starting point and

those that do not to capture the balance between the short range and long-range behavior

of gc(z) at criticality. In directed models in which all walks lack recurrences, this balance
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is missing because only short walks can contribute to the approximations for g,(Z) at small

separation.

Equivalently, one can reformulate the problem of calculating the percolation threshold

in terms of random walks with recurrence, but in (d - 1) dimensions. If a directed 3D

percolation cluster is projected onto the plane perpendicular to the preferred direction, each

site can be identified with a two-dimensional vector r_, its position in the perpendicular

plane with respect to the origin of that duster. Then defin.,' 2

S =L [dr1 g (rI 1 ,r.. = f -)(62
d (6.2)Idk_L exp[-ik-L -. L](k±, k1 = 0)

to be the expected number of sites contained in the cluster and located at lateral positions

i;_. Proceeding as in Section 3 then shows that S(f±) is given by the generating function

of a random walk process in (d - 1) dimensions. This process occurs, in general, on a

directed lattice (for the 3D SC lattice the corresponding process occurs on the 2D directed

cyclic trianglular lattice), but involves random walks with nonzero probability of return to

the origin. However, this formulation shows that the MSA describes a directed 3D process

in terms of a 2D process. Since the MSA is in general inapplicable in two dimensions, this

gives another view of the failure of the MSA in this case. From this analysis, however, one

expects the MSA to give accurate critical densities for higher-dimensional (> 3) directed

percolation.

7. Conclusions

The MSA approach to site percolation has been successfully extended to both bond

percolation and general site-bond percolation. The bond percolation threshold given by

this method is found to coincide with an analytic estimate already shown to be of high

accuracy. For the general site-bond percolation model on the SC lattice, the percolation

locus calculated from this approximation agrees quite well with that given by simulation.

Better agreement will require a general, reliable method for treating site percolation mod-
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els, possibly using the corresponding Potts-model mapping. 22

A class of approximations of MSA type have been applied to directed site ;.nd bond

percolation models. These approximations give moderate accuracy, but will require ba-

sic improvements to give highly accurate predictions. Some reasons for this have been

identified.

A major advantage of this approach to percolation is that the resulting integral equa-

tions can be solved analytically to give the connectedness function gc(Z12). Summing this

function over all possible separation vectors z12 then gives the mean cluster size. The

results described in this paper can be generalized in a number of directions without giving

up this advantage. For example, the bond probability, which in this paper was taken to

be non-zero only for particles with nearest-neighbor separation, can be taken to have cer-

tain, non-trivial, long-range forms while still allowing exact solution for the connectedness

function.

It would be valuable to have efficient computational procedures for the accurate de-

termination of gc(W12) in a general correlated percolation problem. The hybrid procedure

discussed in Section 4, in which the Kikuchi method is used to calculate the short-range

values of g(x12 ), and these are then used in the MSA, shows great promise in prelim-

inary studies reported here. It would be useful to find a direct Kikuchi approximation

for bond percolation, so as to eliminate the added algebraic complexity introduced by the

Potts-model map, if this is possible.

Also, in some models it may be necessary to use clusters substantially larger than

those tractable by analytic means. For these models, an analog to the numerical methods

used in the phenomenological renormalization group would be valuable.

These matters are presently under study.
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In this appendix, we sketch the Wannier, or four-site, approximation for bond perco-

lation on the simple cubic (SC) lattice.

In the Wannier, or four-site, approximation, the bond and square composed of near-

est neighbor sites are chosen as the set of small clusters used as a basis for building up

correlations. For a general, a-state Potts model, there are 20 different configurations of the

spins in these clusters. These are shown in Figure 3. The variables giving the probability

of occurrence of each site, bond and square configuration are denoted by ri, yii, and zqjkq,

respectively, where the subscripts give the values of the site variables involved. In terms

of these variables, the Kikuchi method gives, for the free energy of the system:

ijI

9 {9Zy Iyijns~ - yj - 72 tai In mi - i - 3 E [ziklIn zjkl - z,,jlI } (A.1)

C M ID i yi .T] EI iL Ai- i

Here z is the coordination number and K is the Potts coupling constant. The first term in

this expression is the energy per spin, the term it -urly brackets gives the entropy per spin,

and the last three terms incorporate constraints due to the normalization of variables.

The expression (A.1) is minimized under the conditions

7 In zi -C + D = 0 (A.2)

lzK(1 - 6ij) - 9lnyij - Di + Eli = 0 (A-3)

E.[ In 2ijiu - E1  0 (A.4)

where the sum in the equation (A.4) is over the four cyclic permutations of (ijkl). It is not

difficult to solve these equations in the symmetric phase. In the limit. -+ 1, the variables

with all indices equal take the value unity; in this limit they give the correlations of a non-

interacting spin model. The one-state limit of variables whose indices are not all equal
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is also well-defined, however, and gives the correlation functions of bond percolation.T',

For example, the one-state limit of 112 gives the nearest-neighbor value of the blocking

function; this is the lattice analog of (3.8). This quantity is given by

132 = Z4/( -pb)

= [3c2 - 3:3 + X4]3 
(A.5)

where the auxilliary variable x = expIAE 2l] with E12 the Lagrange multiplier in (A.1).

Equation (A.5) determines the nearest-neighbor corelation function hi = 1 - Y12 as a

function of the bond density Pb. Substituting this into (2.19) gives, for the bond percolation

threshold in the SC lattice, pb = .246, which is in excellent agreement with the series

estimate pb = .249 ± .0002.25
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FIGURE CAPTIONS

1. The lowest-order graphs in the density expansion of hl, the nearest-neighbor connect-

edness function, as given by (3.19). This quantity is required in the MSA for a general

site-bond percolation model.

2. The percolation locus for random site-bond percolation on the 3D simple cubic (SC)

lattice, as given both by simulation (solid line), and by the MSA of Section 3 (dotted line).

3. Configurations whose probabilities of occurrence form the working variables for the

Wannier or square approximation to the properties of the a-state Potts model. By conven-

tion, '1' here denotes the symmetry-breaking state; '2', '3', etc., denote any other distinct

states. The. = 1 limit of these variables give the two and four-point correlation functions

of bond percolation at small separation.
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Table Captions

1. Approximations to the bond percolation threshold given by the low density MSA dis-

cussed in Section 3. The sources for the numerical estimates are: "Adler et. al. (1990), b

Sykes et. al. (1976), cVyssotsky et. al. (1961). This table was adapted from reference 25

and revised.

2. Approximations to the 3D directed site and bond percolation thresholds given by the

MSA scheme discussed in Section 4. The slow convergence is believed to be a result of the

two-dimensional nature of the problem in the MSA.
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Table 1. Approximations to Bond Percolation Threshold Given by (3.18)

Lattice series expansions 00

simple cubic 0.2488 ± 0.0002d 0.25273

body-centered cubic 0.18025 ± 0.00015a 0.17415

face-centered cubic 0.119 ± 0.0,0.11206

hexagonal close-packed 0.124 ± 0.005c 0.11206

4D simple cubic 0.16005 ± 0.00015a 0.156

5D simple cubic 0.11819 ± 0.0000496 0.115

2



Table 2. Approximations to Directed Percolation Threshold Given by Equation (3.18)

Order of Approximation Bond Percolation Site Percolation

1 0.333 0.333

2 0.348 0.395

3 0.352 0.396

4 0.356 0.396

5 0.362 0.396

(EXACT) 0.384 0.432
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